Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Cmc-Computers Materials & Continua ; 74(2):4531-4545, 2023.
Article in English | Web of Science | ID: covidwho-2309241

ABSTRACT

Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning. Each feature in a dataset has 2(n) possible subsets, making it challenging to select the optimum collection of features using typical methods. As a result, a new metaheuristics-based feature selection method based on the dipper-throated and grey-wolf optimization (DTO-GW) algorithms has been developed in this research. Instability can result when the selection of features is subject to metaheuristics, which can lead to a wide range of results. Thus, we adopted hybrid optimization in our method of optimizing, which allowed us to better balance exploration and harvesting chores more equitably. We propose utilizing the binary DTO-GW search approach we previously devised for selecting the optimal subset of attributes. In the proposed method, the number of features selected is minimized, while classification accuracy is increased. To test the proposed method's performance against eleven other state-of-the-art approaches, eight datasets from the UCI repository were used, such as binary grey wolf search (bGWO), binary hybrid grey wolf, and particle swarm optimization (bGWO-PSO), bPSO, binary stochastic fractal search (bSFS), binary whale optimization algorithm (bWOA), binary modified grey wolf optimization (bMGWO), binary multiverse optimization (bMVO), binary bowerbird optimization (bSBO), binary hysteresis optimization (bHy), and binary hysteresis optimization (bHWO). The suggested method is superior and successful in handling the problem of feature selection, according to the results of the experiments.

2.
Intelligent Automation and Soft Computing ; 35(3):3295-3315, 2023.
Article in English | Scopus | ID: covidwho-2245074

ABSTRACT

With the rapid spread of the coronavirus epidemic all over the world, educational and other institutions are heading towards digitization. In the era of digitization, identifying educational e-platform users using ear and iris based multi-modal biometric systems constitutes an urgent and interesting research topic to pre-serve enterprise security, particularly with wearing a face mask as a precaution against the new coronavirus epidemic. This study proposes a multimodal system based on ear and iris biometrics at the feature fusion level to identify students in electronic examinations (E-exams) during the COVID-19 pandemic. The proposed system comprises four steps. The first step is image preprocessing, which includes enhancing, segmenting, and extracting the regions of interest. The second step is feature extraction, where the Haralick texture and shape methods are used to extract the features of ear images, whereas Tamura texture and color histogram methods are used to extract the features of iris images. The third step is feature fusion, where the extracted features of the ear and iris images are combined into one sequential fused vector. The fourth step is the matching, which is executed using the City Block Distance (CTB) for student identification. The findings of the study indicate that the system's recognition accuracy is 97%, with a 2% False Acceptance Rate (FAR), a 4% False Rejection Rate (FRR), a 94% Correct Recognition Rate (CRR), and a 96% Genuine Acceptance Rate (GAR). In addition, the proposed recognition system achieved higher accuracy than other related systems. © 2023, Tech Science Press. All rights reserved.

3.
Intelligent Automation and Soft Computing ; 35(3):3295-3315, 2023.
Article in English | Scopus | ID: covidwho-2030636

ABSTRACT

With the rapid spread of the coronavirus epidemic all over the world, educational and other institutions are heading towards digitization. In the era of digitization, identifying educational e-platform users using ear and iris based multi-modal biometric systems constitutes an urgent and interesting research topic to pre-serve enterprise security, particularly with wearing a face mask as a precaution against the new coronavirus epidemic. This study proposes a multimodal system based on ear and iris biometrics at the feature fusion level to identify students in electronic examinations (E-exams) during the COVID-19 pandemic. The proposed system comprises four steps. The first step is image preprocessing, which includes enhancing, segmenting, and extracting the regions of interest. The second step is feature extraction, where the Haralick texture and shape methods are used to extract the features of ear images, whereas Tamura texture and color histogram methods are used to extract the features of iris images. The third step is feature fusion, where the extracted features of the ear and iris images are combined into one sequential fused vector. The fourth step is the matching, which is executed using the City Block Distance (CTB) for student identification. The findings of the study indicate that the system’s recognition accuracy is 97%, with a 2% False Acceptance Rate (FAR), a 4% False Rejection Rate (FRR), a 94% Correct Recognition Rate (CRR), and a 96% Genuine Acceptance Rate (GAR). In addition, the proposed recognition system achieved higher accuracy than other related systems. © 2023, Tech Science Press. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL